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ABSTRACT 

We prove a preservat ion theo rem for limit s teps  of countable  suppor t  

i terat ions of proper  forcing not ions  whose par t icular  cases are preservat ions  

of the  following proper t ies  on limit steps:  "no r andom reals are added" ,  

"~u(Random(V))  ~ 1", "no domina t ing  reals are added" ,  "Cohen (V)  is 

not  comeager" .  Consequent ly ,  countable  suppor t  i terat ions of a -cen te red  

forcing not ions  do not  add  r a n d o m  reals. 

I n t r o d u c t i o n  

There are many results on iterated forcing which can be understood as preserva- 

tion theorems. Let us mention the following two kinds of preservation theorems. 

Let �9 be a property of forcing notions and let (P~, Q~: i < a) be an iterated 

forcing system and let P~ be a limit of this system. 

(A) Assume that for each i < ~, IFp~ "Qi has the property ~". Has Pa the 

property r too? 
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(B) Assume that for each i < a, P~ has the property (I). Has P~ the property 

(I) too? 

The properties "P does not add an unbounded real" and "P does not add a 

convergent series which cannot be majorized by a series from the ground model" 

of a forcing notion P ensure that the set of old objects will remain dominant in 

the generic extension. Preserving the base of the ideal of null sets or preserving 

the base of the ideal of meager sets are similar properties of forcing notions. 

Let us note that for proper forcing notions all these examples of the properties 

satisfy the preservation theorem of type (A). This is a consequence of a general 

preservation theorem proved in [4] (see also [10], Theorem XVIII.3.6). 

Let us recall a problem of Judah and Shelah (see [4], Problem 0.14): Assume 

that  (P,~, Q,~: n E w) is an iterated forcing system with inverse limit P~. Does 

the assumption that for every n E w, P~ does not add Cohen reals imply that 

P~ does not add Cohen reals? 

Problem 0.13 of [4] is concerned with the preservation (of type (A)) of the 

property "no random reals axe added". It is known (see [3]) that a two step 

iteration P �9 (~ can add a random real over V although P does not add random 

reals over V and II=p " Q does not add random reals over V[G]". However in this 

example the forcing notion P is not proper. 

We will prove a preservation theorem of the type (B) for the property "no 

random reals are added" assuming all forcing notions are proper. Note that  for 

finite support iteration of coc.c, forcing notions even much stronger versions of 

such result are known to be true (see e.g. [2]). We will prove our preservation 

theorem in a somewhat more general context so that as a consequence we get 

preservation of some other properties of forcing notions (not adding a dominating 

real, not adding a majorant series, etc.). 

The preservation theorem 

Let (En : n E w) be an increasing sequence of two place relations on ~w. We let 

E = U~ E~. We always think of a formula ~(n, x, y) which defines x En y- This 

provides a definition of relations E,~ in all models containing the parameters of 

~. We need from ~ to be absolute in all transitive models (in all our examples 

of the use of the preservation theorem ~ is even arithmetical). We also require 

the following to be satisfied: 

(i) The formula ~(n, h, x) is a definition of a Borel set which is a relatively 
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closed subset of rng(E) with parameters n, h, i.e. {x: h En x} is relatively 

closed in rng(E) (with the same Borel code in all transitive models) for 

all n �9 w, h �9 ~w. 

(ii) Whenever A C dom(E) is countable then there is f �9 dom(E) such that 

for every g �9 A and every n �9 w there is k _> n such that  

(Vx) f Ek x --* g Ek x. 

(iii) The formula 

r  = ( v x  �9 / E. x --, E. x 

is absolute for all transitive models containing f and g. (Note that  if 7~ 

is arithmetical then r is H~ and so absolute.) 

Note that  we do not require from E to be transitive. In the case when E is 

transitive and reflexive the condition (ii) says somewhat more than that  every 

countable system is ___-bounded by a single element. 

We say that  a real x is E-dominating over V if for all y �9 V n dom(E), y E x. 

EXAMPLES: (1) For f , g  �9 ~w and n �9 w set 

f E L g i f f ( V k > _ n )  f(k)<_g(k), and f E  b g i f f ( V ~ k )  f(k)<_g(k). 

Hence, f is Eb-dominating over V if and only if f is dominating over V. 

(2) Let /C = {f  �9 ~Q+: ~-]~ne~ f(n) < 1}, where Q+ is the set of positive 

rationals endowed with the discrete topology. For f ,  g � 9  and for n �9 w set 

f E ~ g i f f ( V k > n )  f(k)<g(k),  and f E  K:giff(v~176 f(k)<g(k).  

Hence f is a E~Z-dominating real over V if and only if f majorizes all series 

from V. 

(3) Let S = {f  e ~([<~2]<~): (Vn �9 w) f(n) C_ '~2 & ~-]~,~ If(n)[2 -~ _< 1} be 

ordered by f <* g iff (V~176 f(n) C_ g(n). 
Every function f �9 S represents a G~ set AI = {x �9 ~2: (3~176 x[k �9 f(k)} 

of Lebesgue measure zero and every measure zero set is a subset of some set A I. 
A variant of the Stern-Raisonnier result [8] says that  every subfamily of $ of 

cardinality less than add(X) (additivity of Lebesgue measure) is bounded. 
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The set S is a closed subset of the product ~([<~2]<~), where the countable 

set [<~2] <~ is endowed with the discrete topology. For f �9 S, x �9 ~2 and n �9 r 

we define 

S E ~ x i f f ( V k > n )  x r k ~ f ( k ) ,  and f E  r x i f f x C A  I. 

Hence a real x is Er-dominating over V if and only if x is a random over V. 

(4) Let ~ = <~2 and let C = { f  �9 n~/: (Vs �9 ~) s C_ f (s)} .  For f , g  �9 C and 

n �9 w let 

$E cgiff U [g(s)]C_ U [$(s)], 

Clearly, 

{x �9 ~n:  f E c X} ----- 

and ]" E c g iff (3n) ]" E c g. 

N U {x �9 C: f (g(s)[m) C g(s)} 
I,l>n ,~<m<g(~) 

is a closed subset of n ~  which is obviously homeomorphic to the Baire space. 

CLAIM: There is a U C-dominating real over V if  and only if  the set Cohen(V) 

of  Cohen reals over V is comeager. 

Proof: I fg  is EC-dominating over V then the set nne~  Ul,l>n[g(s)] is a comeager 

set of Cohen reals. 

Conversely, let us assume that  there is comeager set of Cohen reals. By an 

application of Kuratowski-Ulam theorem we can find a Cohen real over V such 

that  Cohen(V[c]) is still comeager (see [7], Proposition 1.2). We will find a 

EC-dominating real over V. 

For s E <~2 let c, E ~2 be defined as follows: cs(n) = s(n), for n E dom(s), 

and cs(n) = c(n), for n >_ Is[. Let f e C n V be arbitrary. Since c~, for s E <~2, 

are Cohen reals over V,  we can define a function hs: <~2 ~ w, in V[c], so that  

for every t E <~2, 

[c, rhI(t)] c U [s(8)l, 
I~l>ltl 

since the right-hand side is open dense. Since Cohen(V[c]) is comeager, there 

is a dominating real over Y[c] (see [6], the proof of Theorem 1.2), and so there 

is a function h: <~2 --* w such that  (Vs) Is I _ h(s) and for every f E C n V, 

(V~176 hi(s  ) <_ h(s). 
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Define g(s) = c8 [h(s) for s E <~2. Then for every f E C n V there is n E w 

such that  h(s) >_ hs(s) for all s, I s] > n, and so 

U c_ U [c.rhs(s)] c_ U 
181>" I~1_>", I~1_>" 

Therefore, g is a EC-dominating real over V. The Claim is proved. I 

All these relations satisfy the required properties (i)-(iii). Note that  all of 

them satisfy the following strengthening of (ii): 

(ii) ~ Whenever A C_ dora(E) is countable then there is f E dora(__) such that 

for every g E A for all but finitely many k E w, (Vx) f E k x --* g Ek x. 

For examples (1) and (2) this is a consequence of the fact that  the respective 

relation E is transitive and for every countable family there is a E-dominating 

element in the range of E. For example (3) the condition (ii) ~ follows easily from 

the fact that  every countable subfamily of S is bounded by a single element with 

respect to the ordering _<*. We will prove the property (ii) I for the example (4) 

only. 

Let f0, f l ,  f2,--- be a sequence of elements of d. For arbitrary s E <~2, let us 

define s~ E <~2, i E w as follows: so = s, s~+l = ]~(si). Let us define ] E C by 

f ( s )  = sis I. T h e n / ( s )  extends all fi(sl) for i < Isl and for every n, and i < n, 

U [f(8)] C U [fi(si)] C U [fi(t)]. 
I~1_>,, I~1_>,, Itl>_n 

Hence fi E c f for all n > i and by transitivity of the relations E c, the property 

(ii)' follows. 

Note that the relations in examples (1), (2) and (4) placed into Theorem 3 

will produce preservation theorems for not adding a dominating real, not adding 

a majorant series, and not adding a comeager set of Cohen reals, respectively. 

It is known (see e.g. [1]) that  not adding a majorant series is equivalent to the 

fact that  the set of random reals does not have full measure. Hence we get a 

preservation of  the property "#(Random(V)) r 1." 

The relation E r (example (3)) placed into Theorem 3 will produce a preserva- 

tion theorem for not adding a random real. 

The following two technical lemmata will be used in the proof of Theorem 3. 
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LEMMA 1: Let P * (~ be an iteration of proper forcing notions. Let p E P be 

an (N, P)-generic condition and let p IF- § E (~ n N[G], where G is the canonical 

name for a generic filter on P. Then there is a P-name (l such that (p, q) _< (p, § 

and (p, (1) is (iV, P �9 Q )-generic. 

Proof By hypothesis there is a maximal antichain {p~: i E I} below p and 

P-names § E N such that  pi I}- § = § All Pi are (N, P)-generic. Now there 

are P-names q~ for conditions in Q such that (pi,~i) _< (p~,~i) and (p~,~i) is 

(N, P *  Q)-generic (see [9], page 91). By the fullness of V P (see [5], Lemma 18.5) 

there is ~ E V P such that  Pi Ib ~ = ~i. Then, obviously, (p, ~) = V{(p~, qi): i E I} 

and so (p, ~) is (N, P �9 Q)-generic and (p, ~) _< (p, § I 

We will use a special case of the situation appearing in the proof of the previous 

lemma. 

Definition: Let p E P, § E V P. We say that p has an (N, P)-evidence about 

the name § if there is an antichain A C_ P n N such that p _< W A and for every 

q E A there is a P-name § E N such that q Ib § = § (Note that p I}- § E N[G].) 

I 

LEMMA 2: Let ~o be a formula of the forcing language with parameters in N 

and let il E V v. I f  p is (N, P)-generic, p has an (N, P)-evidence about 1} and 

p Ib 3x ~o(x, ~t), then there is a P-name ~ such that p Ik ~v(~, y) and p has an 

(N, P)-evidence about Jc. 

Proof." Let A C P A N  be an antichain witnessing the (N, P)-evidence ofp  about 

/). Hence for r E A there is a P-name l}r E N such that r Ib y = ~r. Consequently, 

the Boolean value a~ = [[3x qo(x,~)[[ is in N. For r E A, let A~ E N be an 

antichain which is maximal with the property A~ C_ {t E P: t _< a~ & t _< r}. 

A~ = UreA A~ is an antichain and, by the assumption of the lemma, p _< V A'. 

Since the antichains Ar and the values V A~ are all in N and since p is (N, P)- 

generic, only the conditions in A~ n N, for some r E A, can be compatible with 

p. Consequently, p _< V(A' n N). 

Without loss of generality we can assume A = A' n N and so r I~- 3x ~(x, yr), 

for r E A. By the existential completeness lemma there is a P-name J:~ E N such 

that  r tt- ~(:~,y~). Define & so that  r It- ~ = ~:~, for r E A. Obviously, p II- ~(x, ?)) 

and the antichain A = A' A N witnesses the (N, P)-evidence of p about x. 1 
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THEOREM 3: Let P~ be the inverse limit o f  an iterated forcing sys tem 

(Pn, (~n: n E w). I f  for all n E w, Pn is proper and it does not add a E-dominating 

real then P~ does not add a E-dominating real. 

Proof." Let V be a P~-name for a real, p E P~. We find q _< p and f E "~w n V 

such that  q II-~ f [~ V. Hence T is not __-dominating over V. 

Let X be a large enough cardinal and let N -< H(X) be such that  T, p, P~ E N. 

Let f E ~w n dom(E) be such that 

(Vx E ~ w ) ( f  _ x ~ (Vg E dom(_)  O N) g _ x) .  

By induction on n E w we define 

(i) a P~-name ib~ for a condition in/~n,~, 

(ii) an (N, Pn)-generic condition an E P~, 

such that  

(iii) qn has an (N, Pn)-evidence about ~bn, 

(iv) qn+lrn = an, (qn+l,lbn+l) _< (qn,Pn), (qn+l,lbn+l)I~-~ f ~:n T. 

For n = 0 set iSo = p, qo = 0. Obviously, condition (iii) is satisfied. Let n E w 

be arbitrary and let us assume that we have constructed ~b,, q,~. We will find 

P,+I,  qn+l. 

Since qn has an (N, Pn)-evidence about / in ,  by Lemma 2, there is a P , -name 

(ibn,m: m E w) for a decreasing sequence of conditions in 15,,~ and a Pn-name r= 

for a real such that 

qn II-~ (Vm)(~bn,m+l < p~,~ & pn,~ II-~,~, Trm = rnrm) 

and such that  qn has an (N, Pn)-evidence about (ibn,m: m E w) and Tn. 

By the hypothesis of the theorem, Tn is not a name for a ___-dominating real, 

and so using Lemma 2 again, there is a Pn-name J~ for a real from the ground 

model such that q,~ I}-n J~ [Z vn and q~ has an (N, Pn)-evidence about h. By the 

choice of f ,  using the properties (ii) and (iii) of _,  we can find a Pn-name a for 

an integer greater than n such that 

(,) qn lFn (VxE~w)  f E a x ~ h E a x  

and such that  qn has an (N, Pn)-evidence about h. (Use an antichain A which 

witnesses the (N, P,~)-evidence of qn about J~ such that  every condition r E A 
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decides a g~ E N for the name tt. By the definition of f and the property (ii) of 

U, we can find a sequence {k~: r E A} of integers _> n such that (Vx E ~w) f E k~ 

x ~ g~ E_kr x. Now define ti so that r It- h = k~. Then the property ( , )  holds by 

absoluteness of r  

In particular, q,~ It-n ]t IZa r~. Since {x: ]t IZa x} is a name for a relatively open 

set containing T~ in V P", using Lemma 2, there is a Pn-name rh for an integer 

so that 

q. IF. c {x x} 

and qn has an (N, P~)-evidence about rh. Then by (*), 

q. iv. c {x: f x} c {x: / x}. 

Now set Pn+l = ~gn,Th [(n q- 1, W) and, using Lemma 1, choose q,+l  E Pn+l 

such that q~+l[n = q,~ and q,~ I~-n qn+l(n) <_ ~n,,+~(n). Note that q,~+l has an 

(N, Pn+l)-evidence about ibn+i and (q~+l,ibn+l) _< (q~,p~). At last 

(qn+l,Pn+l) <-- (qn,f)n,rn)It-,~ T E ['rn Irh] C {x E ww: f [Zn x}. 

Therefore, the conditions (iii) and (iv) are satisfied. 

Now define q = Une~ qn. Obviously, q It-~ f [Z T and so the proof of the 

theorem is finished. I 

COROLLARY 4: Let (Pn, Q.n: n E w) be an iteration forcing system and let P~ 

be the inverse limit of this system. Then 

(a) if  for all n E w, Pn does not add random reals, then P~ does not add 

random reals, 

(b) if  for all n E w, P,~ does not add dominating reals, then P,, does not add 

dominating reals, 

(c) i f  for all n E w, Pn does not add a set of random reals of positive measure, 

then P~ does not add a set of random reals of positive measure, 

(d) i f  for all n E w, Pn does not add a comeager set of Cohen reals, then P~ 

does not add a comeager set of Cohen reals. 

THEOREM 5: Any  forcing notion obtained as a result of the countable support 

iteration of a-centered forcing notions does not add random reals 

Proof'. The limit case of the proof follows from Theorem 3 and the nonlimit case 

is a corollary of the forthcoming lemma. Let us consider the system of functions 
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from example (3): 

$ = { f  e ~(P(<~2)): (Vn e w) f(n) C '~2 ~z Z If(n)[ < 1}, 
- -  2 ? %  - -  

SEW 

f <* g (3m)(vn > m) f(n) c g(n). 

If 9 ~ C S, then b ( ~ )  denotes the minimal cardinality of an unbounded subset of 

~" with respect to the order _<* restricted to .T'. 

We say that a family F C_ S is a cove r ing  f ami ly  if the following two condi- 

tions are satisfied: 

(1) (Vx E ~2)(3f  E ~ ) ( 3 ~ k )  xtk E f(k) ,  

(2) b(~') > wl. 

Easily it can be seen that a forcing notion P does not add random reals if and 

only if 

Ibp "the family S n V is covering." 

Hence the next preservation lemma is sufficient for the nonlimit step in the proof 

of the theorem. 

Let Q be a a-centered forcing notion. Then for every covering family LEMMA 6: 
~', 

I~-Q "the family ~ is covering." 

In the proof we will need this lemma. 

LEMMA 7 ([11]): Let Q = U~ Q,~ where each Q~ is centered. Let a be a finite 

set and let T be a Q-name of a member of a, i.e. lt-Q T E a. Then for arbitrary 

index n there is k E a such that 

(Vp E Q~)(3q < p) q IF T = k. 

Proot~ If not, then for every k E a there is a condition qk E Qn such that 

qk IF v r k. Since Q~ is centered, there is a condition q stronger than all qk and 

this condition forces v ~ a which is a contradiction. I 

Proof of Lemma 6: Let & be arbitrary Q-name of a real. For every n E w the 

set 

T,~ = {s E <~2: (Vp E Q~)(3q _< p) q IF s c_ k} 
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is a subtree of the tree <~2 and, according to Lemma 6, this is an infinite tree. Let 

yn E ~2 be an infinite branch of Tn. Since ~" is a covering family and b(~') >_ Wl, 

there is a function f e ~- such that  for all n E w, (3~176 E w) yn rk E f (k ) .  We 

show that IbQ (3~176 E w) fctk E f (k ) .  

On the contrary let us assume that for some condition p E Q and for some 

m e w ,  

p I}- (Vk > m) ~rk g f (k ) .  

There is n c w such that  p e Q,~. Let k > m be arbitrary such that Yn rk e f (k ) .  

Now, since ynrk E Tn, there is q _< p such that q IF- Jc[k = ynrk and so q Ih }rk E 

f (k ) .  This is a contradiction since k > m and q _< p. 

The proofs of Lemma 6 and Theorem 5 are finished. I 

Note that Lemma 6 is true also for ~-centered forcing notions for any ~ < 

add(A/'). 

PROBLEMS: (1) Assume <Pn, Qn: n E w) is an iteration forcing system of random 

algebras with the inverse limit Pw. Is there a random real in V P~ which is a 

random real over all V P" , n E w ? 

(2) Find a two step iteration P �9 Q of proper forcing notions such that P does 

not add random reals, Ikp "Q does not add random reals", but P �9 Q adds a 

random real. 

References  

[1] T. Bartoszynski, Additivity of measure implies additivity of category, Transactions 

of the American Mathematical Society 281 (1984), 209-213. 

[2] T. Bartoszynski and H. Judah, Measure and Category, in preparation. 

[3] T. Bartoszynski and H. Judah, Jumping with random reals, Annals of Pure and 

Applied Logic 48 (1990), 197-213. 

[4] M. Goldstern, Forcing tools for your forcing construction, in Set Theory of the 

Reals 1991 (H. Judah, ed.), Israel Mathematical Conference Proceedings 6 (1993), 

305-360. 

[5] T. Jech, Set Theory, Academic Press, New York, 1978. 

[6] A.W. Miller, Some properties of measure and category, Transactions of the 

American Mathematical Society 266 (1981), 93-114. 

[7] J. Pawlikowski, Why Solovay real produces Cohen real, Journal of Symbolic Logic 

51 (1986), 957-968. 



Vol. 92, 1995 RANDOM REALS 359 

[8] J. Raisonnier and J. Stern, The strength of measurability hypothesis, Israel Journal 

of Mathematics 50 (1985), 337-349. 

[9] S. Shelah, Proper Forcing, Lecture Notes in Mathematics 940, Springer-Verlag, 

Berlin, 1982. 

[10] S. Shelah, Proper and Improper Forcing, to appear. 

[11] J. Stern, Generic extensions which do not add random reals, Proc. Caracas, Lecture 

Notes in Mathematics 1130, Springer-Verlag, Berlin, 1983, pp. 395-407. 


